Baulcombe Lab

Dr Francisco Navarro

Francisco J. Navarro's work focuses on the function of small RNA (sRNA) molecules and their use as regulatory elements in synthetic gene circuits. sRNA molecules most likely evolved as a defense mechanism against viruses and retro-transposons, and were co-opted for fine-tuning of gene expression. Their small size and predictable targeting rules make them perfect tools for regulating gene expression in synthetic gene circuits. This project is carried out in the green alga Chlamydomonas reinhardtii, which is amenable to genetic manipulation and a model organism for key plant processes, such as photosynthesis. With an sRNA pathway that resembles that of higher plants, Chlamydomonas allows the testing of proof-of-principle small RNA-based genetic devices before extrapolating to other plant species.

Francisco completed his PhD in the laboratory of Prof. Jose Manuel Siverio (University of La Laguna, Spain), studying nitrate assimilation in Hansenula polymorpha, a methylotrophic yeast with important biotechnological applications. This was followed by a postdoc in the laboratory of Sir Paul Nurse, first at The Rockefeller University, USA, and then at the London Research Institute, on cell size control and regulation of gene expression by RNA-binding proteins. Through systematic screening of a gene deletion collection of the fission yeast Schizosaccharomyces pombe, he identified a set of novel genes involved in the coordination between cell growth and cell cycle progression. In 2015, he joined the laboratory of Sir David Baulcombe in the Department of Plant Sciences, University of Cambridge.

Francisco’s research interests concern questions regarding global regulation of gene expression and limits of cell growth. These questions are relevant to synthetic biology because synthetic gene circuits are embedded into the cell’s own gene network, and so their activities are not insulated from global cell regulation. He believes that microorganisms, like Chlamydomonas, will continue to be useful research models to uncover new exciting biology, and contribute to the advancement of synthetic biology. The fast growth of unicellular algae, in addition to a range of recently developed tools and resources, are making these organisms an interesting chassis for synthetic biology, with industrial applications in the biopharming sector.

He is also a collaborator of Café Synthetique, an informal monthly meetup with public talks that brings together the Cambridge synthetic biology community